Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1301051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143759

RESUMO

Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Aterosclerose/metabolismo , Apoptose , Citocinas
2.
Aging (Albany NY) ; 15(10): 4481-4497, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253636

RESUMO

BACKGROUND: Neutrophils play crucial roles in the inflammatory response after acute cerebral infarction (ACI). Previous studies revealed neutrophils are non-homogeneous and can be divided into at least two subtypes, pro-inflammatory and anti-inflammatory, correlated with patients' prognosis. OBJECTIVE: We aimed to explore the correlation between disease severity and peripheral blood neutrophils in patients with ACI and determine whether remote ischemic postconditioning (RIPostC) exerts neuroprotective effects by regulating neutrophils. METHODS: Patients (n = 38) with acute anterior circulation cerebral infarction were assigned to conventional treatment (n = 24; included aspirin, statins, neuro nutrition drugs, and circulation improvement drugs) or RIPostC (n = 14; 7-day ischemia adaptation [complete ischemia of both upper extremities for 5 minutes followed by remission for 5 minutes, 5 repeated cycles, twice a day, started from the morning of the second day of admission] based on conventional treatment) groups, based on their preference. General clinical data and peripheral blood samples were taken three times, in the morning before and 3 and 7 days after treatment. Fifteen adults with non-acute cerebral infarction matched for sex, age, and risk factors were recruited as controls; peripheral blood samples were only collected on the recruitment day. We used flow cytometry to detect the percentage of neutrophils and Real-Time PCR to detect the gene expression of interleukin (IL)-1ß in the peripheral blood samples. RESULTS: The percentage of neutrophils, pro-inflammatory neutrophils (IL-1ß high expression in flow cytometry), and IL-1ß mRNA expression increased after ACI (P = 0.01, P = 0.001, P < 0.001). The National Institutes of Health Stroke Scale (NIHSS) score of patients with ACI within one day of onset was positively correlated with the percentage of pro-inflammatory neutrophils (R = 0.618, P = 0.043). Pro-inflammatory neutrophils in the RIPostC group decreased compared with those in the conventional treatment group, with the most significant difference observed on Day 7 (P = 0.01). However, the percentage of neutrophils was not statistically different. IL-1ß mRNA expression decreased, with the most significant difference on Day 3 (P = 0.004). The NIHSS and Modified Rankin Scale scores for RIPostC decreased more significantly than for conventional treatment (P = 0.002, P = 0.019). CONCLUSION: More severe cerebral infarction was associated with a higher percentage of pro-inflammatory neutrophils. The neuroprotective effect of RIPostC may partly be exerted through gene regulation to reduce pro-inflammatory neutrophils.


Assuntos
Isquemia Encefálica , Pós-Condicionamento Isquêmico , Acidente Vascular Cerebral , Estados Unidos , Humanos , Pós-Condicionamento Isquêmico/efeitos adversos , Acidente Vascular Cerebral/etiologia , Isquemia Encefálica/etiologia , Infarto Cerebral/etiologia , RNA Mensageiro
3.
Front Neurol ; 14: 1149671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025208

RESUMO

The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.

4.
Curr Neuropharmacol ; 21(3): 621-650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35794770

RESUMO

As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Neutrófilos/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/patologia , Isquemia Encefálica/metabolismo
5.
Aging Dis ; 12(3): 812-825, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34094644

RESUMO

Ischemic postconditioning (IPostC) is a concept of ischemic stroke treatment, in which several cycles of brief reocclusion after reperfusion are repeated. It is essential to have an accurate understanding of the immune response in IPostC. By using high parametric single-cell mass cytometry, immune cell subsets and characterize their unique functions from ischemic brain and peripheral blood were identified after IPostC. This study enabled us to better understand the immune cell phenotypical and functional characteristics in ischemic brain and peripheral blood at the single-cell and protein levels. Since some cell surface markers can serve as functional markers, reflecting the degree of inflammation, the cell surface marker intensity among different groups was analyzed. The results showed that downregulation of 4E-BP1 and p38 of Microglia and MoDM in the ischemic brain was involved in IPostC-induced protection. In the peripheral blood, downregulation of P38 of CD4 T cell and Treg has also participated in IPostC-induced protection.

6.
Front Neurol ; 11: 812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071923

RESUMO

Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.

7.
J Immunol Res ; 2020: 9132410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908941

RESUMO

Stroke induces a robust inflammatory response. However, it still lacks a systematic view of the various immune cell types due to the limited numbers of fluorophore used in the traditional FACS technique. In our current study, we utilized the novel technique mass cytometry (CyTOF) to analyze multiple immune cell types. We detected these immune cells from the ischemic brain, peripheral blood, spleen, and bone marrow at different time courses after stroke. Our data showed (1) dynamic changes in the immune cell numbers in the ischemic brain and peripheral organs. (2) The expression levels of cell surface markers indicate the inflammation response status after stroke. Interestingly, CD62L, a key adhesion molecule, regulates the migration of leukocytes from blood vessels into secondary lymphoid tissues and peripheral tissues. (3) A strong leukocyte network across the brain and peripheral immune organs was identified using the R program at day 1 after ischemia, suggesting that the peripheral immune cells dramatically migrated into the ischemic areas after stroke. This study provides a systematic, wide view of the immune components in the brain and peripheral organs for a deep understanding of the immune response after ischemic stroke.


Assuntos
Biomarcadores , Citometria de Fluxo , Imunidade , AVC Isquêmico/imunologia , Animais , Antígenos CD/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Imunofenotipagem , AVC Isquêmico/diagnóstico , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Fatores de Tempo
8.
Biomed Pharmacother ; 127: 110125, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361163

RESUMO

Connexin-43 (Cx43) is the most abundant gap junction protein in the nervous system. It enables cell communication and has important physiological roles including ion transport and substrate exchange, all of which have been implicated in cerebral ischemia injury. Our previous in vitro and in vivo studies have demonstrated that Cx43 is internalized and degraded during ischemia stress. However, the significance of ischemia-induced degradation of Cx43 remains unclear. Herein, we demonstrated that Cx43 degradation during ischemia injury is mediated by selective autophagy; additionally, we identified two related autophagy receptors-OPTN and NDP52. Cx43 degradation during ischemia requires its phosphorylation and ubiquitination, which are mediated by PKC, Src kinases, and ubiquitin kinase PINK1. Using point mutagenesis, we identified three phosphorylation sites underlying Cx43 autophagy degradation under ischemic stress. Cx43 degradation inhibition promoted the transition of astrocytes from a pro-inflammatory to an anti-inflammatory status, based on the levels of IL-10 and TNF in ischemia. Knockdown or accelerated degradation of Cx43 protected astrocytes from apoptosis under ischemic stress. These findings elucidate the underlying mechanism of astrocytic Cx43 autophagic degradation during ischemia. The study has identified potentially novel therapeutic strategies against ischemic stroke and evidence of crosstalk between autophagic degradation of Cx43, astrocytic apoptosis, and neuroinflammation.


Assuntos
Apoptose , Astrócitos/metabolismo , Autofagia/fisiologia , Isquemia Encefálica/metabolismo , Conexina 43/metabolismo , Inflamação/prevenção & controle , Animais , Isquemia Encefálica/tratamento farmacológico , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Masculino , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Oligodendroglia/patologia , Proteínas Quinases/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Ubiquitinação
9.
Front Neurosci ; 14: 223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300287

RESUMO

Vinpocetine (Vinp) is known for its neuroprotective properties. However, the protective mechanism of Vinp against cerebral ischemia/reperfusion (I/R) injury should be further explored. This study was designed to investigate the neuroprotective effects of Vinp against oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro and cerebral I/R injury in vivo and explore whether this mechanism would involve enhancement of astrocytic connexin 43 (Cx43) expression via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we detected astrocytic viability and extracellular nitric oxide by an assay kit, intracellular reactive oxygen species by a DCFH-DA probe, inflammation and apoptosis-related protein expression by immunofluorescence staining, and the astrocytic apoptosis rate by flow cytometry. In vivo, we measured the cerebral infarction volume, superoxide dismutase activity, malondialdehyde content, and the expression of inflammation and apoptosis-related proteins. The results indicated that Vinp ameliorated the detrimental outcome of I/R injury. Vinp attenuated astrocytic injury induced by OGD/R and reduced cerebral infarction volume and cerebral edema in rats with cerebral I/R injury. Moreover, Vinp reduced oxidative stress, inflammation, and apoptosis induced by cerebral I/R injury in brain tissues. Meanwhile, Vinp increased p-Cx43 and p-AKT expression, and the p-Cx43/Cx43 and p-AKT/AKT ratio, which was decreased by cerebral I/R injury. Coadministration of PI3K inhibitors LY294002 and BKM120 blunted the effects of Vinp. This study suggests that Vinp protects against cerebral I/R injury via Cx43 phosphorylation by activating the PI3K/AKT pathway.

10.
J Cereb Blood Flow Metab ; 40(4): 747-759, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30895879

RESUMO

Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.


Assuntos
AVC Isquêmico/genética , Macrófagos/metabolismo , Proteínas dos Microfilamentos/genética , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Movimento Celular/genética , Movimento Celular/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Inativação Gênica , Inflamação , AVC Isquêmico/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/antagonistas & inibidores , Microglia/imunologia , Microglia/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/genética , Fagocitose/imunologia
11.
Front Neurol ; 10: 467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130914

RESUMO

Chronic cerebral circulation insufficiency (CCCI) refers to a chronic decrease in cerebral blood perfusion, which may lead to cognitive impairment, psychiatric disorders such as depression, and acute ischemic stroke. Remote limb ischemic conditioning (RLIC), in which the limbs are subjected to a series of transient ischemic attacks, can activate multiple endogenous protective mechanisms to attenuate fatal ischemic injury to distant organs due to acute ischemia, such as ischemic stroke. Recent studies have also reported that RLIC can alleviate dysfunction in distant organs caused by chronic, non-fatal reductions in blood supply (e.g., CCCI). Indeed, research has indicated that RLIC may exert neuroprotective effects against CCCI through a variety of potential mechanisms, including attenuated glutamate excitotoxicity, improved endothelial function, increased cerebral blood flow, regulation of autophagy and immune responses, suppression of apoptosis, the production of protective humoral factors, and attenuated accumulation of amyloid-ß. Verification of these findings is necessary to improve prognosis and reduce the incidence of acute ischemic stroke/cognitive impairment in patients with CCCI.

12.
World J Clin Cases ; 7(3): 389-395, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30746381

RESUMO

BACKGROUND: Gerstmann-Sträussler-Scheinker (GSS) disease is an inherited prion disease that is clinically characterized by the early onset of progressive cerebellar ataxia. The incidence of GSS is extremely low and it is particularly rare in China. Therefore, clinicians may easily confuse this disease with other diseases that also cause ataxia, resulting in its under-diagnosis or misdiagnosis. CASE SUMMARY: Here, we report the first case of genetically diagnosed GSS disease in Northeast China. The patient exhibited typical ataxia and dysarthria 2.5 years after symptom onset. However, magnetic resonance imaging of the brain and spinal cord revealed a normal anatomy. Screening results for the spinocerebellar ataxia gene were also negative. We thus proposed to expand the scope of genetic screening to include over 200 mutations that can cause ataxia. A final diagnosis of GSS was presented and the patient was followed for more than 3.5 years, during which we noted imaging abnormalities. The patient gradually exhibited decorticate posturing and convulsions. We recommended administration of oral sodium valproate, which resolved the convulsions. CONCLUSION: Patients with inherited ataxia should be considered for a diagnosis of GSS via genetic testing at an early disease stage.

13.
Exp Ther Med ; 17(1): 165-174, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30651778

RESUMO

A prior study by our group using cDNA array analysis identified the tight junction component claudin-12 (CLDN12) to be an upregulated gene in lung squamous cell carcinoma (SqCC) cells compared with normal human bronchial epithelial cells. The present study aimed to explore the effect and underlying molecular mechanism of CLDN12 with regard to the malignant phenotype of SqCC. Firstly, the expression patterns of CLDN12 in SqCC tissues, lung adenocarcinoma tissues and histologically non-neoplastic lung epithelial tissues were investigated by immunohistochemistry and western blotting. Additionally, associations between CLDN12 expression and clinicopathological indicators were examined in patients with SqCC. Furthermore, the impact of CLDN12 on the malignant phenotype of the human bronchial epithelial cell line BEAS-2B in vitro was assessed using the Cell Counting kit-8 assay, Transwell assay and a wound-healing experiment. Western blotting and immunofluorescence were also used to detect the impact of CLDN12 on the epithelial-mesenchymal transition (EMT) of BEAS-2B cells. Tyrosine kinase 2 (Tyk2) RNA interference was further utilized to determine the impact of the Tyk2/signal transducer and activator of transcription 1 (Stat1) signaling pathway on the EMT of BEAS-2B cells. To conclude, it was indicated that the expression of CLDN12 was upregulated in SqCC tissues and was associated with the extent of lymphatic metastasis in patients with SqCC. Furthermore, CLDN12 promoted the EMT of human bronchial epithelial cells in vitro. The findings indicated that the induction of Tyk2/Stat1 signaling appears to be an important mechanism by which CLDN12 promotes the EMT of SqCC cells.

14.
Neurodegener Dis ; 19(3-4): 101-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32045917

RESUMO

BACKGROUND: Leukoaraiosis (LA), widely accepted as a feature of cerebral small vessel disease, significantly increases the incidence of stroke, dementia, and death. Cerebral small artery disease has been considered as one of the main causes of LA. However, since the term "venous collagenosis" (VC) was proposed in an atrophy research in 1995, there have been pathological and neuroimaging studies proving the association between the venous system and LA in aging, Alz-heimer's disease (AD), and Parkinson's disease. SUMMARY: Autopsy studies confirmed that thickening of the lumen wall in venules, which results from the deposition of collagen I and III, leading to vessel stenosis or occlusion, is closely associated with LA. Susceptibility-weighted imaging research revealed a controversial association of deep medullary veins and LA in vivo, regarding which there are no standard criteria currently. Nevertheless, retinal venous changes had been reported to increase the risk of LA development, providing a novel way for in vivo evaluation. As for the internal jugular vein, jugular venous reflux could double the LA score in aging and modulate circulation of cerebral spinal fluids. Key Messages: Disruption of the venous system was notably associated with LA in aging, AD, and Parkinson's disease post-mortem and in in vivo models. The venous pathological changes may induce cerebral hypoperfusion, drainage system disruption, and vasogenic oedema in the veins around the periventricular white matter. The clarification of VC in LA may provide an early prevention and early treatment strategy for LA patients.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Veias Cerebrais/patologia , Transtornos Cerebrovasculares/patologia , Leucoaraiose/patologia , Doença de Parkinson/patologia , Humanos
15.
Diagn Pathol ; 13(1): 72, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219077

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Asia; however, the molecular mechanism in its tumorigenesis remains unclear. Abnormal expression of claudins (CLDNs), a family of tight junction (TJ) proteins, plays an important role in the metastatic phenotype of epithelial-derived tumors by affecting tight junction structure, function and related cellular signaling pathways. In a previous study, we used a tissue chip assay to identify CLDN17 as an upregulated gene in HCC. Here we aimed to use molecular biology technology to explore the effect of CLDN17 on the malignant phenotype of HCC and the underlying molecular mechanism, with the objective of identifying a new target for HCC treatment and the control of HCC metastasis. METHOD: The expression levels of CLDN17 in HCC tissues and histologically non-neoplastic hepatic tissues were explored by immunohistochemistry. Stable transfection of the hepatocyte line HL7702 with CLDN17 was detected by real-time polymerase chain reaction (PCR), western blotting and immunofluorescence. The impact of CLDN17 on the malignant phenotype of HL7702 cells in vitro was assessed by a Cell Counting Kit-8 (CCK8) assay, a Transwell assay and a wound-healing experiment. Western blotting was utilized to detect the activation state of Tyrosine kinase 2 (Tyk2) / signal transducer and activator of transcription3 (Stat3) pathway. A Tyk2 RNA interference (RNAi) was utilized to determine the impact of the Tyk2/Stat3 signaling pathway on the malignant phenotype of hepatocytes. RESULTS: In this work, our research group first found that CLDN17 was highly expressed in HCC tissues and was associated with poor prognosis. In addition, we demonstrated that CLDN17 affected the Stat3 signaling pathway via Tyk2 and ultimately enhanced the migration ability of hepatocytes. CONCLUSION: In conclusion, we confirmed that the upregulated expression of CLDN17 significantly enhances the migration ability of hepatocytes in vitro and we found that the activation of the Stat3 pathway by Tyk2 may an important mechanism by which CLDN17 promotes aggressiveness in hepatocytes.


Assuntos
Carcinoma Hepatocelular/metabolismo , Claudinas/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Claudinas/genética , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Fator de Transcrição STAT3/genética , TYK2 Quinase/genética
16.
Biomed Res Int ; 2018: 6316059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112410

RESUMO

Following cerebral ischemia/reperfusion (I/R) injury, a series of pathophysiological processes are stimulated in both the central nervous system (CNS) and the periphery, including, but not limited to, the peripheral immune and endocrine systems and underregulation of the neuroendocrine-immune network. Glutamate (Glu) is an important excitatory neurotransmitter in the CNS; its excitotoxicity following cerebral ischemia has been a focus of study for several decades. In addition, as a novel immunoregulator, Glu also regulates immune activity in both the CNS and periphery and may connect the CNS and periphery through regulation of the neuroendocrine-immune network. Ischemic postconditioning (IPostC) is powerful and activates various endogenous neuroprotective mechanisms following cerebral I/R, but only a few studies have focused on the mechanisms associated with Glu to date. Given that Glu plays an important and complex pathophysiological role, the understanding of Glu-related mechanisms of IPostC is an interesting area of research, which we review here.


Assuntos
Isquemia Encefálica/fisiopatologia , Ácido Glutâmico/metabolismo , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Neuroproteção
17.
Medicine (Baltimore) ; 97(31): e11360, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30075502

RESUMO

RATIONALE: Mixed connective tissue disease (MCTD) refers to an overlapping condition of different autoimmune disorders such as systemic lupus erythematosus, cutaneous systemic sclerosis, rheumatoid arthritis, polymyositis, and dermatomyositis. However, MCTD manifesting as transverse myelitis is extremely rare. Herein, we report a case of MCTD with both central and peripheral nervous system involvement. PATIENT CONCERNS: We describe and discuss the clinical findings and management of a 36-year-old man presented with a 2-week history of sudden bilateral lower-limb paralysis and dysuresia. Further investigation of his medical history showed a 6-month history of autoimmune symptoms. DIAGNOSES: The patient was diagnosed with MCTD, transverse myelitis, mononeuritis multiplex, and multiple lacunar infarctions. INTERVENTIONS: A combination of low-dose methylprednisolone (40 mg/d) and hydroxychloroquine sulfate (400 mg/d) was administered. OUTCOMES: After treatment, the symptoms were significantly improved. The patient recovered well after 1 year follow-up and the sequela was urinary incontinence and grade 4/5 lower-extremity muscle strength. LESSONS: MCTD with multiple neurological complications is extremely rare and poses diagnostic and therapeutic challenges. Our experience suggests a combination of low-dose corticosteroids and hydroxychloroquine sulfate may be an effective therapeutic approach.


Assuntos
Doença Mista do Tecido Conjuntivo/complicações , Doença Mista do Tecido Conjuntivo/diagnóstico , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/diagnóstico , Adulto , Humanos , Masculino , Doença Mista do Tecido Conjuntivo/terapia , Doenças do Sistema Nervoso/terapia
18.
J Neuroinflammation ; 15(1): 198, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976213

RESUMO

BACKGROUND: Stroke is the second leading cause of death worldwide and the most common cause of adult-acquired disability in many nations. Thus, attenuating the damage after ischemic injury and improving patient prognosis are of great importance. We have indicated that ischemic preconditioning (IP) can effectively reduce the damage of ischemia reperfusion and that inhibition of gap junctions may further reduce this damage. Although we confirmed that the function of gap junctions is closely associated with glutamate, we did not investigate the mechanism. In the present study, we aimed to clarify whether the blockade of cellular communication at gap junctions leads to significant reductions in the levels of glutamate released by astrocytes following cerebral ischemia. METHODS: To explore this hypothesis, we utilized the specific blocking agent carbenoxolone (CBX) to inhibit the opening and internalization of connexin 43 channels in an in vitro model of oxygen-glucose deprivation/re-oxygenation (OGD/R), following IP. RESULTS: OGD/R resulted in extensive astrocytic glutamate release following upregulation of hemichannel activity, thus increasing reactive oxygen species (ROS) generation and subsequent cell death. However, we observed significant increases in neuronal survival in neuron-astrocyte co-cultures that were subjected to IP prior to OGD/R. Moreover, the addition of CBX enhanced the protective effects of IP during the re-oxygenation period following OGD, by means of blocking the release of glutamate, increasing the level of the excitatory amino acid transporter 1, and downregulating glutamine expression. CONCLUSIONS: Our results suggest that combined use of IP and CBX represents a novel therapeutic strategy to attenuate damage from cerebral ischemia with minimal adverse side effects.


Assuntos
Carbenoxolona/farmacologia , Junções Comunicantes/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Embrião de Mamíferos , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
J Neuroinflammation ; 15(1): 97, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587860

RESUMO

BACKGROUND: Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. METHODS: Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. RESULTS: We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane's Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. CONCLUSIONS: We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury.


Assuntos
Astrócitos/metabolismo , Benzofuranos/farmacologia , Carbenoxolona/farmacologia , Hipóxia Celular/efeitos dos fármacos , Conexina 43/metabolismo , Junções Comunicantes/fisiologia , Glucose/deficiência , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Astrócitos/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Junções Comunicantes/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/metabolismo , Quinolinas
20.
Oncotarget ; 8(32): 53623-53630, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881836

RESUMO

This systematic review is to explore the prevalence of depression in patients with rheumatoid arthritis (RA) in China. Articles of prevalence rates for depression in adult RA patients published before October 2015 were identified from PubMed, Embase, The Cochrane Library, CNKI, CBM, VIP, and Wanfang database and other internet databases. Relevant journals and the recommendations of expert panels were also searched manually. Two independent reviewers searched and assessed the literature. Therelevant data were applied with Meta-Analyst 3.13 software, and the forest plot and funnel plot were performed. 21 studies with a total of 4447 patients were selected to be enrolled in this study. The prevalence of depression by analyzing the effect size was 48% [95% CI (41%, 56%)]. The prevalence of minor depression and dysthymic disorder was 30% [95%CI (23%, 38%)], and the moderate or major depression was 18% [95%CI (11%, 29%)], respectively. Subgroup analysis showed that the depression rate of female RA patients was higher than male. The depression rate in the central and western areas were higher than that of the eastern region of China, the prevalence level estimated by the Geriatric Depression Scale (GDS) was higher than estimated by other tools. Sensitivity analysis showed that the pooled effect size had good stability and reliability, To be conclusive, the prevalence rate of depression in RA patients is 48%, which suggesting that medical staff should pay more attention to depression in adult patients with RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...